B. Math. I Year 2001-2002 I Semester Final Exam

Date: 21-11-2001

Algebra I

Max. Marks:

Instructions: All questions, even if they are not of the same level of difficulty, carry equal marks.

- 1. Determine the centralizer of a k-cycle in the permutation group S_n , where $1 \leq k \leq n$.
- 2. Show that there exists a unique non-abelian group of order 2p where p is an odd prime.
- 3. Let G be a group of order $p^e \cdot m$ where (p, m) = 1 and p is a prime. Show that G contains a subgroup of order p^e . (Sylow's first theorem.)
- 4. Let G be a group of order $p^e \cdot a$ with $1 \le a < p$; p prime and $e \ge 1$. Show that G is not simple.
- 5. If H is a subgroup of G, define $N(H) = \{g \in G | gHg^{-1} = H\}$. If P is a p-Sylow subgroup of G, prove that N(N(P)) = N(P).
- 6. Let H, N be normal subgroups of G such that $N \subset H$. Let G = G/Nand $\bar{H} = H/N$. Prove that \bar{H} is a normal subgroup of \bar{G} and G/H is isomorphic to G/H. (The third isomorphism theorem.)
- 7. Prove that a square matrix is invertible if and only if its columns are linearly independent.
- 8. (a) Let W be a subspace of a finite dimensional vector space V. Show that there is a subspace W_1 of V such that $V = W \oplus W_1$. Is W_1 unique? (b) Let v be a non-zero vector in a finite dimensional vector space Vover a field F. Show that there is a linear transformation $T: V \to F$ such that $T(v) \neq 0$.
- 9. A linear transformation $T: V \to V$ is called nilpotent if $T^k \equiv 0$ for some k. If dimension of V is n, show that $T^n \equiv 0$ for any nilpotent $T: V \to V$. (Hint: Prove that $Im(T^{i+1})$ is a proper subspace of $Im(T^i)$ if $Im(T^{i}) \neq \{0\}.$